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Abstract 
Background subtraction from dynamic background, At any location of the scene, this system extract a sequence 

of regular video bricks, i.e., video volumes spanning over both spatial and temporal domain. The background 

modeling is thus posed as pursuing subspaces within the video bricks while adapting the scene variations. For 

each sequence of video bricks, it pursues the subspace by employing the auto regressive moving average model 

that jointly characterizes the appearance consistency and temporal coherence of the observations. During online 

processing, it use tracking algorithm kalman’s filter for background/foreground classification and incrementally 

update the subspaces to cope with disturbances from foreground objects and scene changes. 

Index Terms— Background modeling, visual surveillance, spatio-temporal representation. 

 

I. INTRODUCTION 
BACKGROUND subtraction (also referred as 

foreground extraction)  has  been  extensively  

studied  in  decades,yet it still remains open in real 

surveillance applications due to the following 

challenges: 

•  Dynamic backgrounds. A scene environment is 

not always static but sometimes highly dynamic, 

e.g., rippling water, heavy rain and camera jitter. 

• Lighting and illumination variations, particularly 

with sudden changes.  

• Indistinct foreground objects having similar 

appearances with surrounding backgrounds.  

In this paper, we address the above mentioned 

difficulties by building the background models with 

the online pursuit of spatio-temporal models and 

kalman filter. Some results generated by  system for 

the challenging scenarios are exhibited . Prior to 

unfolding the proposed approach, we first review the 

existing works in literature.  

 

II. RELATED WORK 
Due to their pervasiveness in various 

applications, there is no unique categorization on the 

existing works of background subtraction. Here we 

introduce the related methods basically according to 

their representations, to distinguish with our 

approach. 

The pixel-processing approaches modeled 

observed scenes as a set of independent pixel 

processes, and they were widely applied in video 

surveillance applications [6], [7] . In these methods 

[1], [2], [8], [9], each pixel in the scene can be 

described by different parametric distributions (e.g. 

Gaussian Mixture Models) to temporally adapt to the 

environment changes. The parametric models, 

however, were not always compatible with real 

complex data, as they were defined based upon some 

underlying assumptions. To overcome this problem, 

some other non-parametric estimations [10]–[13] 

were proposed, and effectively improved the 

robustness. For example, Barnich et al. [13] 

presented a sample-based classification model that 

maintained a fixed number of samples for each pixel 

and classified a new observation as background when 

it matched with a predefined number of samples. 

Liao et al. [14] recently employed the kernel density 

estimation (KDE) technique to capture pixel-level 

variations. Some distinct scene variations, i.e. 

illumination changes and shadows, can be explicitly 

alleviated by introducing the extra estimations [15]. 

Guyon et al. [16] proposed to utilize the low rank 

matrix decomposition for background modeling, 

where the foreground objects constituted the 

correlated sparse outliers. Despite acknowledged 

successes, this category of approaches may have 

limitations on complex scenarios, as the pixel-wise 

representations overlooked the spatial correlations 

between pixels. 

The region-based methods built background 

models by taking advantages of inter-pixel relations, 

demonstrating impressive results on handling 

dynamic scenes. A batch of diverse approaches were 

proposed to model spatial struc-tures of scenes, such 

as joint distributions of neighboring pixels [11], [17], 

block-wise classifiers [18], structured adja-cency 

graphs [19], auto-regression models [20], [21], 

random fields [22], and multi-layer models [23] etc. 

And a number of fast learning algorithms were 

discussed to maintain their models online, accounting 

for environment variations or any structural changes. 

For example, Monnet et al. [20] trained and updated 

the region-based model by the generative sub-space 

learning. Cheng et al. [19] employed the generalized 

1-SVM algorithm for model learning and foreground 
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pre-diction. In general, methods in this category 

separated the spatial and temporal information, and 

their performances were somewhat limited in some 

highly dynamic scenarios, e.g. heavy rains or sudden 

illumination changes. 

The third category modeled scene backgrounds 

by exploiting both spatial and temporal information. 

Mahadevan et al. [24] proposed to separate 

foreground objects from surroundings by judging the 

distinguished video patches, which contained 

different motions and appearances compared with the 

majority of the whole scene. Zhao et al. [25] 

addressed the outdoor night background modeling by 

performing subspace learning within video patches. 

Spatio-temporal representations were also 

extensively discussed in other vision tasks such as 

action recognition [26] and trajectory parsing [27]. 

These methods motivated us to build models upon 

the spatio-temporal representations, i.e. video bricks. 

In addition, several saliency-based approaches 

provided alternative ways based on spatio-temporal 

saliency estima-tions [24], [28], [29]. The moving 

objects can be extracted according to their salient 

appearances and/or motions against the scene 

backgrounds. For example, Wixson et al. [28] 

detected the salient objects according to their 

consistent mov-ing directions over time. Kim et al. 

[30] used a discrimi-nant center-surround hypothesis 

to extract foreground objects around their 

surroundings. 

Along with the above mentioned background 

models, a number of reliable image features were 

utilized to better handle the background noise [31]. 

Exemplars included the Local Binary Pattern (LBP) 

features [32]–[34] and color tex-ture histograms [35]. 

The LBP operators described each pixel by the 

relative graylevels of its neighboring pixels, and their 

effectiveness has been demonstrated in several vision 

tasks such as face recognition and object detection 

[32], [36], [37]. The Center-Symmetric LBP was 

proposed in [34] to further improve the 

computational efficiency. Tan and Triggs [33] 

extended LBP to LTP (Local Ternary Pattern) by 

thresholding the graylevel differences with a small 

value, to enhance the effectiveness on flat image 

regions. 

 

III. OVERVIEW 
In this work, we propose to learn and maintain 

the dynamic models within spatio-temporal video 

patches (i.e. video bricks) and Kalman filter, 

accounting for real challenges in surveillance scenar-

ios [7]. The algorithm can process 15 ∼ 20 frames 

per second in the resolution 352 × 288 (pixels) on 

average. We briefly overview the proposed 

framework of background modeling in the following 

aspects. 

 

1) Spatio-Temporal Representations: We 

represent the observed scene by video bricks, i.e. 

video volumes spanning over both spatial and 

temporal domain, in order to jointly model spatial 

and temporal information. Specifically, at every 

location of the scene, a sequence of video bricks are 

extracted as the observations, within which we can 

learn and update the background models. Moreover, 

to compactly encode the video bricks against 

illumination variations, we design a brick-based 

descriptor, namely Center Symmetric Spatio-

Temporal Local Ternary Pattern (CS-STLTP), which 

is inspired by the 2D scale invariant local pattern 

operator proposed in [14]. Its effectiveness is also 

validated in the experiments.  

 

2) Pursuing Dynamic Subspaces: We treat 

each sequence of video bricks at a certain location as 

a consecutive signal, and generate the subspace 

within these video bricks. The linear dynamic system 

(i.e. Auto Regressive Moving Average, ARMA 

model [38]) is adopted to characterize the spatio-

temporal statistics of the subspace. Specifically, 

given the observed video bricks, we express them by 

a data matrix, in which each column contains the 

feature of a video brick. The basis vectors (i.e. 

eigenvectors) of the matrix can be then estimated 

analytically, representing the appearance parameters 

of the subspace, and the parameters of dynamical 

variations are further computed based on the fixed 

appearance parameters. It is worth mentioning that 

our background model jointly captures the 

information of appearance and motion as the data 

(i.e. features of the video bricks) are extracted over 

both spatial and temporal domains.  

 

3) Maintaining Dynamic Subspaces Online: 

Given the newly appearing video bricks with our 

model, moving fore-ground objects are segmented by 

estimating the residuals within the related subspaces 

of the scene, while the back-ground models are 

maintained simultaneously to account for scene 

changes. The raising problem is to update parame-

ters of the subspaces incrementally against 

disturbance from foreground objects and background 

noise. The new obser-vation may include noise pixels 

(i.e. outliers), resulting in degeneration of model 

updating [20], [25]. Furthermore, one video brick 

could be partially occluded by foreground objects in 

our representation, i.e. only some of pixels in the 

brick are true positives. To overcome this problem, 

we present a novel approach to compensate 

observations (i.e. the observed video bricks) by 

generating data from the current models. Specifically, 

we replace the pixels labeled as non-background by 

the generated pixels to synthesize the new 

observations. The algorithm for online model 

updating includes two steps: 



Mr G.Sekar Int. Journal of Engineering Research and Applications                               www.ijera.com 

ISSN : 2248-9622, Vol. 5, Issue 3, ( Part -3) March 2015, pp.15-20 

 www.ijera.com                                                                                                                                17 | P a g e  

4) (i) update appearance parameters using the 

incremental sub-space learning technique, and (ii) 

update dynamical variation parameters by 

analytically solving the linear reconstruction. The 

experiments show that the proposed method 

effectively improves the robustness during the online 

processing. 

5) The remainder of this paper is arranged as 

follows. We first present the model representation in 

Section II, and then discuss the initial learning, 

foreground segmentation and online updat-ing 

mechanism in Section III, respectively. The 

experiments and comparisons are demonstrated in 

Section IV and finally comes the conclusion in 

Section V with a summary.  

 
  

 

IV. DYNAMIC SPATIO-TEMPORAL 

MODEL 
In this section, we introduce the background of 

our model, and then discuss the video brick 

representation and our model definition, respectively. 

 

A. Background 

In general, a complex surveillance background 

may include diverse appearances that sometimes 

move and change dynami-cally and randomly over 

time flying [39]. There is a branch of works on time-

varying texture modeling [40]–[42] in computer 

vision. They often treated the scene as a whole, and 

pursued a global subspace by utilizing the linear 

dynamic system (LDS). These models worked well 

on some natural scenes mostly including a few 

homogeneous textures, as the LDS characterizes the 

subspace with a set of linearly combined 

components. However, under real surveillance 

challenges, it could be intractable to pursue the global 

subspace. In this work, we represent the observed 

scene by an array of small and independent 

subspaces, each of which is defined by the linear 

system, so that our model is able to handle better 

challenging scene variations. Our background model 

can be viewed as a mixed compositional model 

consisting of the linear subspaces. In particular, we 

conduct the background subtraction with our model 

based on the following observations. 

 

Assumption 1: The local scene variants (i.e. 

appearance and motion changing over time) can be 

captured by the low-dimensional subspace. 

 

Assumption 2: It is feasible to separate foreground 

moving objects from the scene background by fully 

exploiting spatio-temporal statistics. 

 

B. Spatio-Temporal Video Brick 

Given the surveillance video of one scene, we 

first decom-pose it with a batch of small brick-like 

volumes. We consider the video brick of small size 

(e.g., 4 × 4 × 5 pixels) includes relative simple 

content, which can be thus generated by few bases 

(components). And the brick volume integrates both 

spatial and temporal information, that we can better 

capture complex appearance and motion variations 

compared with the traditional image patch 

representations. 

We divide each frame Ii , (i = 1, 2, . . . , n) into a 

set of image patches with the width w and height h. A 

number t of patches at the same location across the 

frames are combined together to form a brick. In this 

way, we extract a sequence of video bricks V = {v1, 

v2, . . . , vn } at every location for the scene. 

 

V. KALMAN FILTER 
The Kalman ¯filter [1,5] is an optimal estimator 

of the state of processes which satisfies: (a) they can 

be modeled by a linear system, (b) the measurement 

and the process noise are white, and have zero mean 

gaussian distributions. Under these conditions, 

knowing the input (external controls ut) and the 

output (measurements zt) of the system, the Kalman 

¯filter provides an optimal estimate of the state of the 

process (xt ), by minimizing the variance of the 

estimation error and constraining the average of the 

estimated outputs and the average of the measures to 

be the same. It is characterized by two main 

equations: the state equation and the measurement 

equation 

xt  = Axt¡1 + But¡1 + wt¡1 

zt  = Cxt + vt 

A is the state transition matrix, B is the external 

control transition matrix, w represents the process 

noise, C is the transition matrix that maps the process 

state to the measurement, and v represents the 

measurement noise. The Kalman ¯lter works in two 

steps: prediction and correction steps. The former 

uses the state of the system and the external control 

at time t ¡ 1 to predict the current state (^x
¡
t ), the 

latter uses the current measure zt to correct the state 

estimation (^xt ). The working schema of the Kalman 

¯lter is illustrated in Figure 1. The factor Kt , the gain 

of the ¯lter, is chosen in order to minimize the 

variance of the estimate error (Pt ). The di®erence 
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between the measure and the state predicted value (zt 

¡ Cx^
¡
t ) is called innovation. 

 
 

VI. RESULT ANALYSIS 
This  measure Intensity, precision and recall rate 

for background subtraction method and  plot a 

precision versus recall graph. 

 precision - fraction of retrieved instances that are 

relevant 

 recall - fraction of relevant instances that are 

retrieved 

 
 

VII. CONCLUSION 
This paper studies an effective method for 

background subtraction, addressing the all challenges 

in real surveillance scenarios. In the method, we learn 

and maintain the dynamic texture models within 

spatio-temporal video patches (i.e. video bricks). 

Sufficient experiments as well as empirical analysis 

are presented to validate the advantages of our 

method. 
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